

WATER-SOLUBLE NANO NITROGEN FOLIAR SPRAY

INTRODUCTION

The Importance of Nitrogen in Crop Growth

Fertilizers are added to crops to ensure sufficient food production for growing human populations. They supply essential nutrients—primarily nitrogen, phosphorus, and potassium—that enable crops to grow faster, larger, and more productively.

Among these macronutrients, **nitrogen is the most crucial for plant growth**. It plays a vital role in several biological processes. Nitrogen is a key component of *chlorophyll*, the pigment that enables plants to harness sunlight for photosynthesis—converting carbon dioxide and water into sugars, their primary source of energy. Nitrogen is also a fundamental building block of *amino acids*, which form the proteins required for plant

structure and function. Without adequate protein synthesis, plants cannot grow and eventually wither.

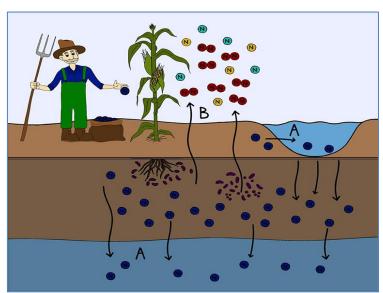
Additionally, nitrogen is essential for the formation of *nucleic acids* such as DNA and RNA, the molecules that carry genetic information and regulate cell division and reproduction. Thus, nitrogen is indispensable to the growth, development, and reproduction of plants.

Although nitrogen makes up approximately 78% of the atmosphere, plants cannot directly absorb atmospheric nitrogen (N_2). Instead, they rely on nitrogen compounds—such as nitrates and ammonium—in the soil. These compounds can be formed naturally through biological nitrogen fixation and decomposition or supplemented through the application of fertilizers.

Plants absorb nitrogen continuously throughout their life cycle, with their nitrogen requirement increasing as they grow. When adequately supplied, plants exhibit vigorous growth and lush, green foliage. In annual crops like maize (corn), sufficient nitrogen allows the plant to reach full maturity without developmental delays.

Conversely, **nitrogen deficiency** leads to poor plant performance. A nitrogen-starved plant is typically small and slow-growing, with pale green or yellowish leaves due to reduced chlorophyll content. In such cases, older leaves often become necrotic and die, as the plant reallocates its limited nitrogen reserves to support newer growth

UREA AS A NITROGEN SUPPLEMENT IN AGRICULTURE: BENEFITS AND LIMITATIONS


To address the deficit in nitrogen availability in agricultural soils, farmers commonly apply nitrogen-rich supplements. The most widely used nitrogen fertilizer across the world is **urea**, owing to its high nitrogen content (46%) and natural origin—it is a compound naturally found in the urine of animals. Urea's high solubility in water makes it easy to handle, transport, and apply in agricultural fields.

However, while urea is effective in promoting plant growth, significant nitrogen losses occur during and after its application—reducing its overall efficiency and contributing to environmental harm.

Once applied to the soil, urea begins to break down rapidly in the presence of moisture and the enzyme **urease**, which is naturally present in most soils. The breakdown reaction is as follows:

$$CO(NH_2)_2 + H_2O + urease \rightarrow 2NH_3 + CO_2$$

In this process, urea hydrolyzes into ammonia (NH₃) and carbon dioxide (CO₂). This reaction typically occurs within 2 to 4 days, and the rate is accelerated in warm conditions and alkaline (high pH) soils.

Nitrogen from fertilizers that is not taken up by plants can be lost from the soil. (A) Nitrogen leaches from the soil and enters into waterways either above ground (lakes, streams, rivers, or oceans) or into ground water. Nitrogen leaching into aquatic ecosystems can lead to harmful algal blooms and the eutrophication of waterways. (B) Some microbes transform the nitrogen in fertilizer into nitrogenous gases. These can then be lost to the atmosphere in the form of greenhouses gases.

The key issue is that <u>ammonia is a gas</u> and easily volatilizes into the atmosphere if the urea remains on the soil surface and is not incorporated quickly. If soils are dry, the reaction is stalled, but once moisture is present, losses can be substantial unless immediate incorporation methods are adopted.

In addition to volatilization, unutilized nitrogen from urea can leach into the soil and eventually be carried away by irrigation or rainwater into nearby water bodies—such as streams, lakes, rivers, and groundwater reservoirs. This runoff contributes to nitrogen pollution, leading to environmental concerns such as eutrophication, algal blooms, and degradation of aquatic ecosystems.

Studies show that, in a typical agricultural field, **less than 40% of the nitrogen from urea is actually absorbed by crops**. The remaining nitrogen [more than 60%] is either lost to the atmosphere as gaseous ammonia **[a greenhouse gas]** or leached away into water systems. Thus, although urea is effective in stimulating crop growth, more than half of the applied nitrogen goes unused—representing both an economic inefficiency and an environmental hazard.

DRAIN ON NATIONAL RESOURCES

Since Urea, despite its adverse impact on ecology, is considered an absolute necessity for farmers, the Government of India [as do several other countries as well] offers Urea to farmers at highly subsidised rates. Urea, which costs Rs 2600 per bag [45 kgs] in the open market, is made available to farmers at Rs 242. In other words, the Government loses Rs 2358 on every bag of Urea sold to farmers. According to the *Annual Review of Fertilizer Production and Consumption 2023–24*, the budget estimate (BE) for annual urea subsidy in 2024–25 is:

• ₹1,19,000 crore (≈ USD 15 billion)

This breaks down as:

- ₹1,00,340 crore for subsidy on indigenous urea production
- ₹22,634 crore for imported urea subsidy

Indian farmers require about 35 million tons of Urea each year. Indian fertilizer manufacturers produce about 31 million tons. Which means, about 4 million tons of Urea is being imported into India every year at high prices and then sold to farmers at subsidised rates.

THE NEED FOR AN ALTERNATIVE

While we need nitrogen from fertilizers for our agriculture, we do not need or want additional nitrogen in our soil, atmosphere or waterways. This means we need to balance the positive benefits of nitrogen fertilization (more food) with the negative consequences of excess fertilizer (environmental hazards) and financial drain on the national exchequer.

The scientists of **EcoHealth Products Pvt Ltd**, India have, after intense researches, developed **N-RICH NANO**, a nano-nitrogen concentrate in liquid form, which has all the benefits of Urea, with none of its deleterious side-effects.

To overcome the limitations associated with urea-based nitrogen application, **nano nitrogen foliar sprays** have emerged as a modern, efficient alternative. These sprays contain nitrogen in ultra-small particle form (typically <100 nm), which enhances its absorption and utilization by plants through leaf surface pores rather than relying on soil uptake.

Below is a comparison of the two approaches:

Parameter	Conventional Urea Application	Nano Nitrogen Foliar Spray
Nitrogen Content	~46% by weight	Typically 4–10% (depending on formulation)
Mode of Application	Soil-based, usually broadcast and mixed with irrigation	Directly sprayed on leaves
Nitrogen Uptake Efficiency	30–40% (rest lost to air, leaching, runoff)	>80% (rapid uptake through stomata and cuticle)
Time to Effect	3–5 days (depends on soil conditions)	Within 24–48 hours (visible response often faster)
Loss Pathways	Volatilization (NH₃), leaching, denitrification	Minimal; bypasses soil, reducing losses
Environmental Impact	High—causes air/water pollution leading to eutrophication and greenhouse effect	Very low—minimal runoff or emissions

Application Frequency	Fewer, larger doses; risk of	Smaller, more precise doses; easily
	overuse	scheduled
Energy/Water	Needs soil moisture or	Can be applied in low water volumes
Requirement	irrigation for activation	
Cost per kg Nitrogen	Low	Higher per kg, but offset by higher
		efficiency
		,
Overall Agronomic	Moderate; economic loss due	High; improved crop response with
Efficiency	to wastage	reduced total nitrogen
•		J

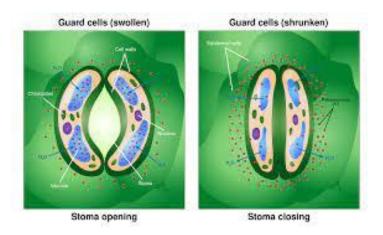
Key Advantages of Nano Nitrogen Foliar Spray:

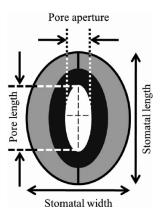
- **Precision Delivery**: Nitrogen is delivered directly to where it's needed—inside plant tissues—without dependency on soil conditions.
- **Reduced Environmental Burden**: Virtually eliminates volatilization and nitrate runoff, thereby protecting air and water quality.
- **Higher Efficiency per Dose**: Even with lower nitrogen content per kg, nano nitrogen achieves superior performance due to high uptake efficiency.
- **Complement to Soil Fertility Practices**: Ideal for use in combination with organic or bio-based soil conditioners for balanced nutrition.

In essence, nano nitrogen is not just a substitute, but a next-generation improvement—particularly suited for sustainable, low-input farming systems where nutrient use efficiency and environmental stewardship are paramount.

WHAT ARE NANO FERTILIZERS?

Nano-fertilizers are the latest cutting-edge technology for optimising nutrient absorption by crops with minimal wastage. Nano-scale fertilizers correspond to the conventional fertilizer, but have greatly reduced particle size, typically in the form of nano-particles. Nano-fertilizers offer benefits in nutrition management through their strong potential to increase Nutrient Use Efficiency (NUE). Nano-fertilizers are a crucial development in the protection of the

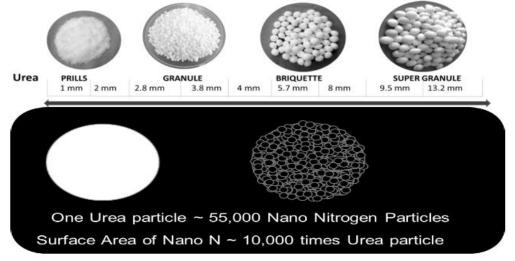




environment because they can be applied in smaller quantities compared to traditional fertilizers, hence reducing leaching, runoff, and gas emissions to the atmosphere.

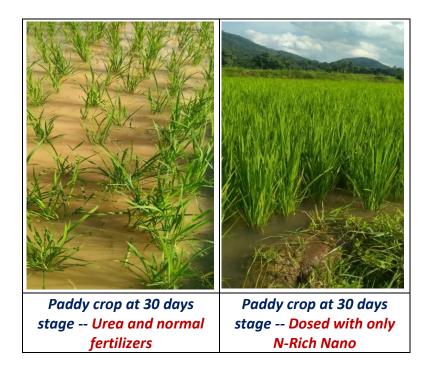
Nanotechnology in agriculture facilitates foliar application as absorption of the nutrients through the stomatal pores is more effective when the nutrients are dosed in nanoparticulate form. The size of the stomatal pores vary according to the nature of the crop. Butthe average the stomatal guard cell is estimated to range from 19 to 71 microns. Which means that the size of the pore is even smaller. In other words, when nutrients are applied as nano particles of smaller diameter, they can be easily absorbed through the stomatal pores.

Scale	Size Classification	Example
Масго	≥100 micrometers (microns)	Can see with the unaided eye
Micro - a millionth of a meter	100 microns to 100 nanometers	A human hair is about 80 microns thick
Nano – a billionth of a meter	1 to 100 nanometers	The width of DNA Helix is 2 nm



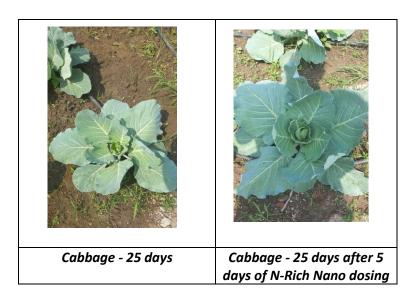
The particle size of urea ranges from 1 mm to 13 mm. Even when dissolved in water, the particle size is several microns and not congenial for direct absorption through the pores.

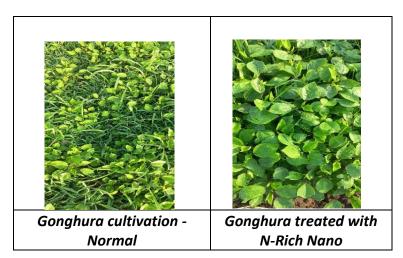
Nano-fertilizers have been projected as a tool to meet sustainable intensification criteria in agricultural activities in the next 30 years due to the feasibility of synchronizing the release mechanism of nutrients (N and phosphorus, P) with an increment in crop yields and forage production while reducing the fertilization inputs (Kalia et al., 2019). Nano-fertilizers can boost NUE by enabling a slow and constant release of nutrients thus assisting nutrient plant uptake (Jyothi and Hebsur, 2017; Kalia and Sharma, 2019). It has been reported that the use of nano-fertilizers can improve crop production by up to 30% compared with traditional chemical fertilizers (Kah et al., 2018); however, there are also studies showing no advantage to using nano-fertilizers over conventional fertilizers (Kopittke et al., 2019).


N-RICH NANO

N-RICH NANO, developed by EcoHealth Products Pvt Ltd, Chennai, is nano-particulate Nitrogen concentrate <u>extracted from Neem cake</u>. With a particle size of <40 nm, about 4 litres of **N-Rich Nano** packs the Nitrogen equivalent of 1 ton of Urea. The nano-particulation facilitates easy absorption through the foliar pores. Since the dosing concentration is vastly reduced, there is very little Nitrogen loss both into the atmosphere and the soil, thereby greatly reducing the formation of greenhouse gases and eutrophication of water bodies.

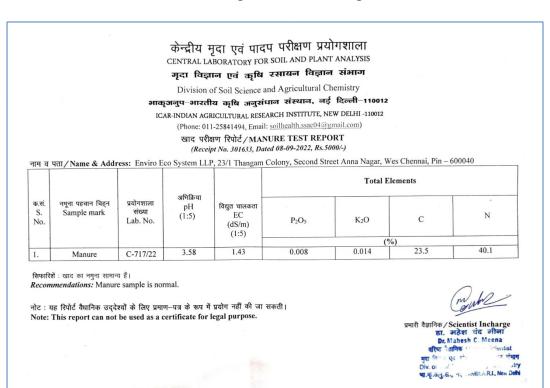
N-RICH NANO is an organic product available as a water-soluble liquid. Unlike other liquid nano-fertilizers, which tend to slowly transform into larger micro/macro-particles over time, N-RICH NANO obtains its nano-particulate structure only when diluted in water at the time of dosing.


Field trials on paddy conducted in Rajamundry belt in Andhra Pradesh showed substantial increase in yield in fields treated with **N-Rich Nano** as compared to Urea.

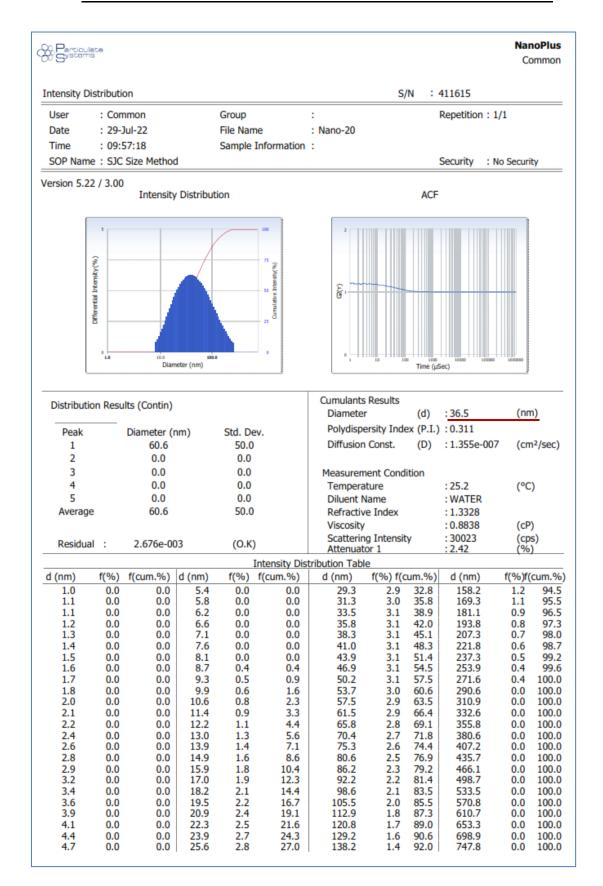


For crops like paddy, 200 ml of N-RICH NANO can be mixed into 400 litres of water and sprayed over 1 acre of crop per application. Two to three applications with 20 to 25 days interval is recommended.

ADVANTAGES OF N-RICH NANO


- ✓ Easy to use. Just mix in water and spray. Spraying can be done using conventional back-pack sprayers or modern drones.
- ✓ 200 ml of N-RICH NANO can replace 50 kgs (1 bag) of Urea.

- ✓ Being a foliar spray, it is easily absorbed through the stomatal pores and transported to all parts of the plant.
- ✓ Since dosing is in miniscule quantities, there is no danger of over-fertilization or underutilization.
- ✓ Since there is no unutilised Nitrogen in the soil, there is no likelihood of nutrient runoffs into waterways and consequent eutrophication.
- ✓ There is also no conversion of unutilised Nitrogen compounds into the air as greenhouse gases.
- ✓ Extremely cost-effective, saving millions to governments in the form of subsidies.
- ✓ Huge saving of foreign exchange as several million tons of Urea is imported by India.
- ✓ Huge savings on transportation costs.


Tests conducted at the Central Laboratory for Soil and Plant Analysis of the Indian Council for Agricultural Research [ICAR] have shown that N-RICH NANO has high Nitrogen content making it one of the richest source of nano nitrogen available for agriculture.

TEST REPORTS ON NANO PARTICLE SIZE OF NITROGEN IN N-RICH NANO

Particulate Systems NanoPlus

Common

Intensity Distribution

Group

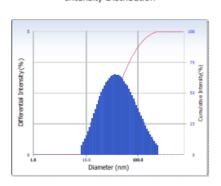
S/N : 411615

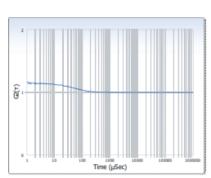
User : Common

sroup

Repetition: 1/1

Date : 23-Jul-22 Time : 08:44:46 File Name : Sample Information :


: Nano-27


Security : No Security

SOP Name: SJC Size Method
Version 5.22 / 3.00

Intensity Distribution

ACF

istribution R	esults (Contin)		Cumulants Results Diameter	(d)	: 39.0	(nm)
Peak	Diameter (nm)	Std. Dev.	Polydispersity Index	(P.I.)	: 0.319	
1	57.4	46.2	Diffusion Const.	(D)	: 1.265e-007	(cm ² /sec)
2	0.0	0.0				
3	0.0	0.0	Measurement Condit	ion		
4	0.0	0.0	Temperature		: 25.1	(°C)
5	0.0	0.0	Diluent Name		: WATER	
Average	57.4	46.2	Refractive Index		: 1.3328	
			Viscosity		: 0.8858	(cP)
Residual :	4.138e-003	(O.K)	Scattering Intensity Attenuator 1		: 29087 : 3.02	(cps) (%)

Residual	:	4.138e-0	03	(O.K)	Attenual	tor 1	.у	: 3.02	(%)
	Intensity Distribution Table										
d (nm)	f(%)	f(cum.%)	d (nm)	f(%)	f(cum.%)	d (nm)	f(%) f(c	um.%)	d (nm)	f(%)f(cum.%)
1.0	0.0	0.0	5.4	0.0	0.0	29.3	3.1	34.2	158.2	1.0	95.6
1.1	0.0	0.0	5.8	0.0	0.0	31.3	3.2	37.3	169.3	0.9	96.5
1.1	0.0	0.0	6.2	0.0	0.0	33.5	3.2	40.5	181.1	0.8	97.4
1.2	0.0	0.0	6.6	0.0	0.0	35.8	3.2	43.8	193.8	0.7	98.1
1.3	0.0	0.0	7.1	0.0	0.0	38.3	3.2	47.0	207.3	0.6	98.7
1.4	0.0	0.0	7.6	0.0	0.0	41.0	3.2	50.3	221.8	0.5	99.2
1.5	0.0	0.0	8.1	0.0	0.0	43.9	3.2	53.5	237.3	0.4	99.6
1.6	0.0	0.0	8.7	0.4	0.4	46.9	3.2	56.7	253.9	0.4	100.0
1.7	0.0	0.0	9.3	0.5	0.9	50.2	3.1	59.8	271.6	0.0	100.0
1.8	0.0	0.0	9.9	0.6	1.5	53.7	3.1	62.8	290.6	0.0	100.0
2.0	0.0	0.0	10.6	0.8	2.3	57.5	3.0	65.8	310.9	0.0	100.0
2.1	0.0	0.0	11.4	0.9	3.2	61.5	2.9	68.7	332.6	0.0	100.0
2.2	0.0	0.0	12.2	1.1	4.3	65.8	2.8	71.5	355.8	0.0	100.0
2.4	0.0	0.0	13.0	1.3	5.6	70.4	2.7	74.1	380.6	0.0	100.0
2.6	0.0	0.0	13.9	1.5	7.1	75.3	2.5	76.7	407.2	0.0	100.0
2.8	0.0	0.0	14.9	1.7	8.8	80.6	2.4	79.1	435.7	0.0	100.0
2.9	0.0	0.0	15.9	1.8	10.6	86.2	2.3	81.4	466.1	0.0	100.0
3.2	0.0	0.0	17.0	2.0	12.6	92.2	2.1	83.5	498.7	0.0	100.0
3.4	0.0	0.0	18.2	2.2	14.8	98.6	2.0	85.5	533.5	0.0	100.0
3.6	0.0	0.0	19.5	2.4	17.2	105.5	1.9	87.4	570.8	0.0	100.0
3.9	0.0	0.0	20.9	2.5	19.7	112.9	1.7	89.1	610.7	0.0	100.0
4.1	0.0	0.0	22.3	2.7	22.4	120.8	1.6	90.6	653.3	0.0	100.0
4.4	0.0	0.0	23.9	2.8	25.2	129.2	1.4	92.1	698.9	0.0	100.0
4.7	0.0	0.0	25.6	2.9	28.1	138.2	1.3	93.4	747.8	0.0	100.0

CERTIFICATE OF ANALYSIS SHOWING PERCENTAGE OF NANO NITROGEN IN N-RICH NANO

ABC Techno Labs India Private Limited

(An ISO: 9001, ISO: 14001, ISO: 45001 & ISO: 22000 Certified Company) ABC TOWER #400, 13th Street, SIDCO Industrial Estate - North Phase, Ambattur, Chennai - 600 098, Tamilnadu, INDIA. Ph: +91-44-2625 7788 / 99, +91 94442 60000 / 95661 87777 Email: lab@abctechnolab.com / Web: www.abctechnolab.com

TEST REPORT

Eco Health Products Pvt Ltd

No:23,2nd Street ,Thangam Colony Anna Nagar West,Chennai-600040 Tamil Nadu

Page:1 of 1

		Customer Provid	ed Details			
Sample Name	NANO RICH		Customer Re	ef TRF Dated 23-06-2025		06-2025
Seal if Any	-	Marks on Sample Batch No:EH		33/64052		
		Lab Provided I	Details			
Report Number	2506/0290/001	Date of Receipt	23-06-2025		lysis menced	24-06-2025
Analysis	30-06-2025	Sample	Good	Sam	ple Qty.	250ml
Report Date	01-07-2025	Sample Drawn by	Customer	Date	of Sampling	NA

Sl. No.	Test Parameters	Test Method	Unit	Results
1	Organic carbon as C	IS 2720 :Part 22	%	3.64
2	Nitrogen as N	IS 14684:1999	%	8.79
3	C:N ratio	By Calculation	-	0.414
4	Phosphorous as P	IS 3025 :Part 31	mg/L	35.6
5	Potassium as K	ISO 5317	mg/L	410
6	Cadmium as Cd	APHA 24 TH Edn.3111B	mg/L	BDL (DL:0.01)
7	Arsenic as As	APHA 24 TH Edn.3113 B	mg/L	BDL (DL:0.01)
8	Mercury as Hg	APHA 24 TH Edn.3112 B	mg/L	BDL (DL:0.001)
9	Copper as Cu	APHA 24 TH Edn.3111 B	mg/L	0.35
10	Boron as B	APHA 24 TH Edn.3111 B	mg/L	BDL (DL:0.001)
11	Iron as Fe	APHA 24 TH Edn.3111 B	mg/L	BDL (DL:0.05)
12	Manganese as Mn	APHA 24 TH Edn.3111 B	mg/L	1.36
13	Zinc as Zn	APHA 24 TH Edn.3111 B	mg/L	0.38
14	Molybdenum as Mo	APHA 24 TH Edn.3111D	mg/L	0.18

BDL - Below Detection Limit, DL - Detection Limit.

.....End of Report.....

R.Sivakumar Asst.Manager

A.Robson Chinnadurai Technical Manager

Verified by

Authorised Signatory

The last report is linked to proven willing negligence and will in no case be more than the involced amount. • The test report is issued for the purpose of Identifying definition and not intended to use for any publicity litigation purpose.

**Results related only to the items will not be retained for more than 15 days from the date of issue of test report for Non-Perishable samples and in the case of Perishable samples test items will be retained for 7 days after date of issue of report. The laboratory's responsibility for this report is limited to proven willing the negligence and will in no case be more than the involced amount. • The test report is issued for the purpose of identifying the characteristics and not intended to use for any publicity /iligation purpose.

ABCTL/FRM/QA/125A*

Issue No.1 Dt.25,04.2023

**Issue No

A nano nitrogen concentration of 8.79% is very good and quite effective for foliar spraying, especially when the formulation is properly stabilized and designed for nano delivery.

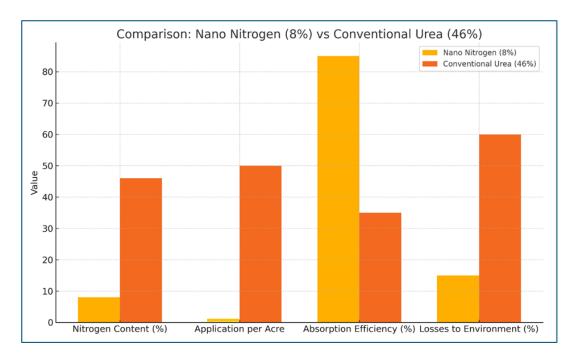
Why 8.79% is Considered Good

Parameter	Value / Benchmark	Remarks
Nitrogen concentration	8.79% (w/w or w/v assumed)	Higher than many nano N products (which are 3–5%)
Form type	Nano nitrogen (likely colloidal or chelated)	Enables better leaf absorption
Typical foliar dose	20–40 ml per acre	Sufficient to meet part of crop N demand
Absorption efficiency	~80–90%	Far higher than soil urea (~30–40%)

Comparison with IFFCO Nano Urea

Parameter	IFFCO Nano Urea	N-Rich Nano
N Concentration	4%	8.79% 🔽
Application dose	30-40 ml/acre	Similar
Equivalence	1 L = 45–50 kg urea	Similar or better

N-Rich offers more than double the nitrogen concentration of IFFCO Nano Urea — which can be a significant technical and commercial advantage.


Key Considerations for Foliar Nano Nitrogen (8.79%)

Factor	Ideal Conditions
Particle size	<100 nm (nano range)

Stability	No clumping/sedimentation
Spray pH	Neutral to slightly acidic (6–7)
Surfactants/wetting agents	May improve uptake
Shelf life	Should remain effective ≥12 months
Phytotoxicity	Field-tested, non-burning at recommended dose

The comparison between **8% nano nitrogen** and **46% conventional urea nitrogen** (by weight) goes beyond just percentage — it hinges on formulation efficiency, absorption, losses, and mode of application.

Factor	Nano Nitrogen	Conventional Urea
Absorption efficiency	~80–90% (foliar uptake)	~30–40% (soil, heavy losses)
Losses (leaching, volatilization, denitrification)	Minimal (~10–20%)	High (~50–70%)
Mode of application	Foliar spray	Soil application
Speed of action	Fast (direct absorption)	Slow (requires conversion in soil)
Environmental impact	Low	High (GHG emissions, leaching)

EcoHealth Products Pvt Ltd

23/1, Thangam Colony – 2nd Street
Annanagar [West], Chennai : 600040
INDIA.

Website: www.ecohealth.in

E-mail: ecohealthppl@ecohealth.in / management@ecohealth.in